
Pregel: 
A System for Large Scale

Graph Processing
Malewicz, et.al

Presenter: Stephan Brandauer

2010 ACM SIGMOD

International Conference on

Management of Data

This talk:
 - High level intro

I like high level abstractions that
carefully exploit their semantics
for optimisations.

Pregel is a particularly pretty case.

Graph Processing:  
hard to parallelise

Graphs are connected by nature — it’s easy
to get data races.

Graph Processing:  
hard to parallelise

Graphs are connected by nature — it’s easy
to get race conditions!

Graph Processing:  
hard to parallelise

Graphs are connected by nature — it’s easy
to get race conditions!

Graph Processing:  
hard to parallelise

Graphs are connected by nature — it’s easy
to get race conditions!

Graph Processing:  
hard to parallelise

Graphs are connected by nature — it’s easy
to get data races.

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Graph Processing:  
hard to distribute

Same problems as parallelisation AND 
deal with machine failures

Two Birds

race conditions

Two Birds

race conditions fault tolerance

Two Birds

race conditions fault tolerance

One Stone

Pregel

 - actor based, with only local state

One Stone

A programming abstraction/library

 - message passing only

 - actor based, with only local state
 - message passing only

Example: Graph connectedness:
 - One message: PING
 - local state: a bool (inital: = false)

assert(is_connected())

 - actor based, with only local state
 - message passing only

Example: Graph connectedness:
 - One message: PING
 - local state: a bool (inital: = false)

assert(is_connected())

 - actor based, with only local state
 - message passing only

Example: Graph connectedness:
 - One message: PING
 - local state: a bool (inital: = false)

assert(is_connected())

 - actor based, with only local state
 - message passing only

Example: Graph connectedness:
 - One message: PING
 - local state: a bool (inital: = false)

assert(is_connected())

 - actor based, with only local state
 - message passing only

Example: Graph connectedness:
 - One message: PING
 - local state: a bool (inital: = false)

assert(is_connected())

 - actor based, with only local state
 - message passing only

Example: Graph connectedness:
 - One message: PING
 - local state: a bool (inital: = false)

assert()

 - actor based, with only local state

 - message passing only

=> All state changes have to go through the abstraction.

=> Can choose when/how often to apply state changes.

this.f.change() send(CHANGE, this.f)/

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) We deliver all messages in an  arbitrary, but deterministic order!

Step 1

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) We deliver all messages in an  arbitrary, but deterministic order!

Step 2

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) We deliver all messages in an  arbitrary, but deterministic order!

Step 3

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and deliver messages in deterministic order!

Step 4

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and deliver messages in deterministic order!

Step 4

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and deliver messages in deterministic order!

Step 4

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and deliver messages in deterministic order!

Step 5

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and deliver messages in deterministic order!

race conditions

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and deliver messages in deterministic order!

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

That’s all we need! :-) super steps, and persist machine state before each step

Safety for performance tradeoff.

Invariant: only successful states  
are persisted

“Persistent data is stored as files on a distributed   storage system, GFS [19], or in Bigtable [9],   and temporary data such as buffered messages   on local disk.”

=> All state changes have to go through the abstraction.
=> Can choose when/how often to apply state changes.

fault tolerance

That’s all we need! :-) super steps, and persist machine state before each step

Safety for performance tradeoff.

Invariant: only successful states  
are persisted

“Persistent data is stored as files on a distributed   storage system, GFS [19], or in Bigtable [9],   and temporary data such as buffered messages   on local disk.”

Slides at: http://stbr.me/pregel-presentation

http://stbr.me/pregel-presentation

