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This talk: 
 - High level intro





I like high level abstractions that 
carefully exploit their semantics 
for optimisations. 

Pregel is a particularly pretty case.
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Example: Graph connectedness: 
 - One message: PING 
 - local state: a bool (inital:      = false)

assert( )
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 - message passing only

=> All state changes have to go through the abstraction.

=> Can choose when/how often to apply state changes. 

this.f.change() send(CHANGE, this.f)/
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